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Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is
known about their diversity, their distribution, and the threats affecting them. We compiled a global
dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting
patterns in earthworm diversity, abundance, and biomass. We found that local species richness and
abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in
aboveground organisms. However, high species dissimilarity across tropical locations may cause
diversity across the entirety of the tropics to be higher than elsewhere. Climate variables were found to
be more important in shaping earthworm communities than soil properties or habitat cover. These
findings suggest that climate change may have serious implications for earthworm communities and for
the functions they provide.

S
oils harbor high biodiversity and are
responsible for a wide range of ecosys-
tem functions and services upon which
terrestrial life depends (1). Despite calls
for large-scale biogeographic studies

of soil organisms (2), global biodiversity pat-
terns remain relatively unknown, with most
efforts focused on soil microbes (3–5). Con-
sequently, the drivers of soil biodiversity, par-
ticularly soil fauna, remain unknown at the
global scale.
Furthermore, our ecological understanding

of global biodiversity patterns [e.g., latitu-
dinal diversity gradients (6)] is largely based
on the distribution of aboveground taxa.
Yet many soil organisms have shown global
diversity patterns that differ from above-

ground organisms (3, 7–9), although the
patterns often depend on the size of the
soil organism (10).
Here, we analyzed global patterns in earth-

worm diversity, total abundance, and total
biomass (hereafter “community metrics”).
Earthworms are considered ecosystem engi-
neers (11) in many habitats and also provide
a variety of vital ecosystem functions and
services (12). The provisioning of ecosystem
functions by earthworms likely depends on
the abundance, biomass, and ecological group
of the earthworm species (13, 14). Consequently,
understanding global patterns in community
metrics for earthworms is critical for predict-
ing how changes in their communities may
alter ecosystem functioning.

Small-scale field studies have shown that
soil properties such as pH and soil carbon
influence earthworm diversity (11, 15, 16). For
example, lower pH values constrain the diver-
sity of earthworms by reducing calcium avail-
ability (17), and soil carbon provides resources
that sustain earthworm diversity and popu-
lation sizes (11). Alongside many interacting
soil properties (15), a variety of other drivers
can shape earthworm diversity, such as cli-
mate and habitat cover (11, 18, 19). However,
to date, no framework has integrated a com-
prehensive set of environmental drivers of
earthworm communities to identify the most
important ones at a global scale.
Previous reviews suggested that earthworms

may have high diversity across the tropics as a
result of high endemism (10). However, this
high regional diversity may not be captured by
local-scalemetrics. Alternatively, in the temper-
ate region, local diversity may be higher (20)
but may include fewer endemic species (10).
We anticipate that earthworm community
metrics (particularly diversity) will not fol-
low global patterns seen aboveground, and
instead, as seen across Europe (15), will in-
crease with latitude. This finding would be
consistent with previous studies at regional
scales, which showed that the species richness
of earthworms increases with latitude (19). Be-
cause of the relationship among earthworm
communities, habitat cover, and soil properties
on local scales, we expect soil properties (e.g., pH
and soil organic carbon) to be key environ-
mental drivers of earthworm communities.
Here, we present global maps predicting

local diversity (number of species), abundance,
and biomass. (Weuse “local” in the sense of site-
level: a location of one or more samples that
adequately captured the earthworm commu-
nity.) We collated 180 datasets from the litera-
ture and unpublished field studies (164 and 16,
respectively) to create a dataset spanning 57
countries (all continents except Antarctica)
and 6928 sites (Fig. 1A). We explored spatial
patterns of earthworm communities and de-
termined the environmental drivers that
shape earthworm biodiversity. We then used
the relationships between earthworm com-
munity metrics and environmental drivers
(table S1) to predict local earthworm com-
munities across the globe.
Three generalized linear mixed-effects mod-

els were constructed, one for each of the
three community metrics: species richness
(calculated within a site), abundance per m2,
and biomass per m2. Each model contained
12 environmental variables as main effects
(table S2), which were grouped into six themes;
“soil,” “precipitation,” “temperature,” “water
retention,” “habitat cover,” and “elevation”
[habitat cover and some soil variables were
measured in the field; the remaining varia-
bles were extracted from global data layers
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based on the geographic coordinates of the
sites (14)]. Within each theme, each model con-
tained interactions between the variables. After
model simplification, all models retained most
of the original variables, but some interactions
were removed (table S3).

Consistent with previous results (20), local
earthworm diversity predictions based on
global environmental data layers resulted in
estimates of one to four species per site across
most of the terrestrial surface (Fig. 1B) (mean,
2.42 species; SD, 2.19). Most of the boreal and

subarctic regions were predicted to have low
values of species richness, which is in line with
aboveground biodiversity patterns (21, 22).
However, low local diversity also occurred in
subtropical and tropical areas, such as Brazil,
India, and Indonesia, in contrast to commonly
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Fig. 1. Global distribution of earthworm diver-
sity. (A) Black dots represent the center of a
“study” used in at least one of the three models
(species richness, total abundance, and total
biomass). The size of the dot corresponds to the
number of sites within the study. Opaqueness is for
visualization purposes only. (B to D) The globally
predicted values of (B) species richness (within
site), (C) total abundance, and (D) total biomass.
Yellow indicates high diversity; dark purple, low
diversity. Gray areas are habitat cover categories
that lacked samples.
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observed aboveground patterns, such as the
latitudinal gradient in plant diversity (22).
This pattern could be due to different relation-
ships with climate variables. For example, al-
though plant diversity increases with potential
evapotranspiration (PET) (22), earthworm di-
versity tended to decrease with increasing PET
(table S3). In addition, soil properties, which
are typically not included in models of above-
ground diversity, can play a role in determin-
ing earthworm communities (11, 15, 23). For
instance, litter availability and soil nutrient
content are important regulators of earthworm
diversity, with oligotrophic forest soils having
more epigeic species and eutrophic soils more
endogeics (23). Furthermore, tropical regions

with higher decomposition rates have fewer
soil organic resources and lower local earth-
worm diversity (Fig. 1B and table S3), domi-
nated by endogeic species, which have specific
digestion systems that allow them to feed on
low-quality soil organic matter (11, 14, 20).
High local species richness was found at

mid-latitudes, such as the southern tip of South
America, the southern regions of Australia and
New Zealand, Europe (particularly north of the
Black Sea), and the northeastern United States.
Although this pattern contrasts with latitudinal
diversity patterns found in many aboveground
organisms (6, 24), it is consistent with patterns
found in some belowground organisms [ecto-
mycorrhizal fungi (3), bacteria (5)], but not all
[arbuscular mycorrhizal fungi (25), oribatid
mites (26)]. Such mismatches between above-
and belowground biodiversity have been pre-
dicted (1, 7) but not shown across the globe
for soil fauna at the local scale.
The patterns seen here could in part be a

result of glaciation in the last ice age, as well
as human activities. Temperate regions (mid-
to high latitudes) that were previously glaci-
ated were likely recolonized by earthworm
species with high dispersal capabilities and
large geographic ranges (19) and through
human-mediated dispersal [“anthropochorous”
earthworms (16)]. Thus, temperate commu-
nities could have high local diversity, as seen
here, but those species would be widely dis-

tributed, resulting in lower regional diversity
relative to local diversity. In the tropics, which
did not experience glaciation, the opposite
may be true. Specific locations may have in-
dividual species that are highly endemic, but
these species are not widely distributed (table
S4). This high local endemism would result
in low local diversity (as found here) and high
regional diversity [as suggested by (10)] rela-
tive to that low local diversity. When the num-
bers of unique species within latitudinal zones
that had equal numbers of sites were calculated
(i.e., a regional richness that accounted for sam-
pling effort), there appeared to be a regional
latitudinal diversity gradient (Fig. 2). Even
with a sampling bias (table S4), regional rich-
ness in the tropics was greater than in the
temperate regions, despite low local diversity.
These results should be interpreted with cau-
tion, given the latitude span of the tropical
zones. However, the underlying data suggest
that endemism of earthworms and b-diversity
within the tropics (27) may be considerably
higher than within the well-sampled temper-
ate region (table S4). Therefore, it is likely that
the tropics harbor more species overall.
The predicted total abundance of the local

community of earthworms typically ranged
between 5 and 150 individuals per m2 across
the globe, in line with other estimates (28) (Fig.
1C; mean, 77.89 individuals per m2; SD, 98.94).
There was a slight tendency for areas of higher
total abundance to be in temperate areas, such
as Europe (particularly the UK, France, and
Italy), New Zealand, and part of the Pampas
and surrounding region (South America), rather
than the tropics. Lower total abundance oc-
curred in many of the tropical and subtropical
regions, such as Brazil, central Africa, and parts
of India. Given the positive relationship between
total abundance and ecosystem function (29),
in regions with lower earthworm abundance,
such functions may be reduced or carried out
by other soil taxa (1).
The predicted total biomass of the local

earthworm community (adults and juveniles)
across the globe showed extreme values (>2 kg)
in 0.3% of pixels, but biomass typically ranged
(97% of pixels) between 1 g and 150 g per m2

[Fig. 1D; median, 6.69; mean, 2772.8; SD,
1,312,782; see (14) for additional discussion
of extreme values]. The areas of high total
biomass were concentrated in the Eurasian
Steppe and some regions of North America.
The majority of the globe showed low total
biomass. In northern North America, where
there are no native earthworms (13), high den-
sity and, in some regions, higher biomass
of earthworms likely reflect the earthworm
invasion of these regions. The small invasive
European earthworm species encounter an
enormous unused resource pool, which leads
to high population sizes (30). On the basis of
previous suggestions (28), we expected that
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Fig. 2. The number of unique species within
each latitudinal zone, when the number of sites
within each zone is comparable. The width of the
bar shows the latitude range of the sites/zones.

Table 1. Model validation results. Cells in boldface show the “best” value when comparing between
the main models (a mixture of sampled soil properties and SoilGrids data) and models containing only
SoilGrids data. Values shown are mean square error [MSE; calculated for all predicted data (“Total”)
and for tertiles (“Low,” “Mid,” “High”)] following 10-fold cross-validation of the main models and
models containing only SoilGrids data, as well as R2 of the main models and SoilGrids-only models.

Total Low Mid High

MSE: Main models

Species richness 1.376 0.917 0.812 3.561
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Abundance 17977.42 1720.75 2521.25 48751.51
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Biomass 3220.29 264.56 441.25 8783.77
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

MSE: SoilGrids models
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Species richness 1.385 0.887 0.793 3.716
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Abundance 18775.81 1735.11 2516.13 51156.76
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Biomass 3068.00 199.91 461.88 8380.81
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Marginal Conditional

R2: Main models
Species richness 0.132 0.748

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Abundance 0.176 0.626
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Biomass 0.201 0.612
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

R2: SoilGrids models
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Species richness 0.142 0.745
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Abundance 0.234 0.643
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Biomass 0.242 0.650
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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earthworms would decrease in body size
toward the poles, showing low biomass rel-
ative to the total abundance in temperate or
boreal regions. In contrast, in tropical regions
(e.g., Brazil and Indonesia) that are dominated
by giant earthworms that normally occur at
low densities and low species richness (31),
we expected high biomass but low abundance.
However, these patterns were not found. This
could be due to the relatively small number
of sample points for the biomass model (n =
3296) compared to the diversity (n = 5416)
and total abundance models (n = 6358), re-
ducing the predictive ability of the model (fig.
S1C), most notably in large regions of Asia
and in areas of Africa, particularly the bound-
aries of the Sahara Desert and the southern
regions (which coincides with sites where sam-
ples are lacking). Additionally, the difficulty
in consistently capturing such large earthworms
in every sample may increase data variability,
reducing the ability of the model to predict.
Overall, the three community metric models

performed well in cross-validation (figs. S3
and S4) with relatively high R2 values [Table 1;
see (14) for further details and caveats]. But
given the nature of such analyses, models and
maps should only be used to explore broad
patterns in earthworm communities and not
at the fine scale, especially in relation to con-
servation practices (32).
For all three community metric models,

climatic variables were the most important
drivers (the “precipitation” theme being the
most important for both species richness
and total biomass models, and “temperature”
for the total abundance model; Fig. 3). The
importance of climatic variables in shaping
diversity and distribution patterns at large

scales is consistent with many aboveground
taxa [e.g., plants (22), reptiles, amphibians,
and mammals (32)] and belowground taxa
[bacteria and fungi (3, 5), nematodes (33)].
This suggests that climate-related methods
and data, which are typically used by macro-
ecologists to estimate aboveground biodiversity,
may also be suitable for estimating earthworm
communities. However, the strong link be-
tween climatic variables and earthworm com-
munity metrics is cause for concern, as climate
will continue to change due to anthropogenic
activities over the coming decades (34). Our
findings further highlight that changes in tem-
perature and precipitation are likely to influ-
ence earthworm diversity (35) and distributions
(15), with implications for the functions that
they provide (12). Shifts in distributions may
be particularly problematic in the case of in-
vasive earthworms, such as in areas of North
America, where they can considerably change
the ecosystem (13). However, a change in cli-
mate will most likely affect abundance and
biomass of the earthworm communities be-
fore it affects diversity, as shifts in the latter
depend on dispersal capabilities, which are
relatively low in earthworms.
We expected that soil properties would be

the most important driver of earthworm com-
munities, but this was not the case (Fig. 3),
likely because of the scale of the study. First,
the importance of drivers could change at
different spatial scales. Climate is driving
patterns at global scales, but within climatic
regions (or at the local scale), other variables
may become more important (36). Thus, one
or more soil properties may be the most im-
portant drivers of earthworm communities
within each of the primary studies, rather than

across them all. Second, for soil properties, the
mismatch in scale between community metrics
and the soil properties taken from global layers
[for sites where sampled soil properties were
missing (14)] potentially reduced the apparent
importance of the theme. Habitat cover in-
fluenced the earthworm community (fig. S5,
A and B), especially the composition of the
three ecological groups (epigeics, endogeics,
and anecics) (fig. S6) (14). Across larger scales,
climate influences both habitat cover and
soil properties, all of which affect earthworm
communities. Being able to account for this
indirect effect with appropriate methods and
data may alter the perceived importance of
soil properties and habitat cover [e.g., with
pathway analysis (37) and standardized data].
However, our habitat cover variable did not
directly consider local management (such as
land use or intensity).
Our findings suggest that climate change

might have substantial effects on earthworm
communities and the functioning of ecosys-
tems; any climate change–induced alteration
in earthworm communities is likely to have
cascading effects on other species in these
ecosystems (13, 28). Despite earthworm com-
munities being controlled by environmental
drivers similar to those that affect above-
ground communities (22, 37), these relation-
ships result in different patterns of diversity.
We highlight the need to integrate below-
ground organisms into biodiversity research,
despite differences in the scale of sampling, if
we are to fully understand large-scale patterns
of biodiversity and their underlying drivers
(7, 8, 38), especially if processes underlying
macroecological patterns differ between above-
ground and belowground diversity (38). The
inclusion of soil taxa may alter the distribu-
tion of biodiversity hotspots and conservation
priorities. For example, protected areas (7)
may not be protecting earthworms (7), de-
spite their importance as ecosystem function
providers (12) and soil ecosystem engineers
for other organisms (11). By modeling both
realms, aboveground/belowground compar-
isons are possible, potentially allowing a clearer
view of the biodiversity distribution of whole
ecosystems.
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